Aluminum Matrix Composite (AlSi7Mg2Sr0.03/SiCp) Pistons Obtained by Mechanical Mixing Method
نویسنده
چکیده
Metal matrix composites are undoubtedly a group of advanced engineering materials. Compared to unreinforced matrix material, they are characterized by increased strength, greater stiffness, increased wear resistance, better mechanical properties and dimensional stability at elevated temperatures as well as lower density. Due to its very favorable tribological properties for many years research has been conducted on the application of MMC in friction node. The article presents important technological aspects related to the production and properties of composite pistons. Under industrial conditions, a composite suspension (AlSi7Mg2Sr0.03/SiCp 10 vol %) was prepared to allow casting of the semi-finished pistons series. Machining parameters of the working surfaces of the piston were selected on the basis of the turning test made on PCD, PCNM and uncoated carbide tools. The tribological properties of the composite pistons were determined on the basis of the pin-on-disc and the abrasion wear. The scuffing tests carried out under real operating conditions have confirmed the possibility of using composite pistons in air compressors.
منابع مشابه
FABRICATION OF Al-SiCp COMPOSITES THROUGH POWDER Metallurgy Process and Testing Of Properties
Metal matrix composites are the class of composite materials finding vast applications in automotive, aircraft, defense, sports and appliance industries. A horizontal ball mill has been fabricated for milling of aluminum and SiC particles. The change in powder particle morphology during mechanical alloying of Aluminum and SiC powders using horizontal ball mill was studied. Al-SiCp composites wi...
متن کاملStudy on tool wear and surface roughness in end milling of particulate aluminum metal matrix composite: Application of response surface methodology
Metal matrix composites have been widely used in industries, especially aerospace industries, due to their excellent engineering properties. However, it is difficult to machine them because of the hardness and abrasive nature of reinforcement elements like silicon carbide particles (SiCp).In the present study, an attempt has been made to investigate the influence of spindle speed (N), feed rate...
متن کاملMicrostructure Characterization and Mechanical Properties of Al-SiCp Composites
In recent years the aluminum matrix composites are gaining wide spread applications in automotive, aerospace, defense, sport and other industries. The reason for this is their exciting properties like high specific strength, stiffness, hardness, wear resistance, dimensional stability and designer flexibility. The present work reports on mechanical properties and microstructure analysis of Al-Si...
متن کاملThe mechanical response of an A359/SiCp MMC and the A359 aluminum matrix to dynamic shearing deformations
The mechanical response of a metal–matrix composite to dynamic shearing deformations has been measured, using a new design of the thin-walled tubular specimen for the torsional Kolsky bar experiment that allows working with these difficult-to-machine materials. The advantages of using the new specimen design are as follows: (i) the thickness of the thin wall along the axial direction is very un...
متن کاملExperimental study of fracture mechanics in the aluminum matrix composites containing Fifteen percent silicon carbide particles
In this investigation ‚the fracture toughness of A356 containing15%SiC composite was studied. Al/SiC composites have been considered because of their mechanical and erosion properties .Low fracture toughness in Al/SiC as compared with Aluminium alloys is one of its disadvantage. In this study at first A356 alloy was melted in a smelting electrical furnace then poured into the mould. A356-15% Si...
متن کامل